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Abstract. The couplings of pions with lowest three doublets (0−, 1−), (0+, 1+) and (1+, 2+) of heavy
mesons are studied with light-cone QCD sum rules in the leading order of heavy quark effective theory.
The ambiguity due to presence of two distinct 1+ states are solved.

1 Introduction

Remarkable progress has been made in understanding the
physics of heavy mesons composed of a heavy quark and a
light quark with the discovery of the heavy quark symme-
try. To obtain detailed predictions one has to employ some
specific nonperturbative methods, among which QCD sum
rules [1] is very useful. The heavy quark effective theory
(HQET) [2] provides a systematic expansion of QCD in
terms of 1/mQ, where mQ is the heavy quark mass. The
spectrum of the ground state heavy meson has been stud-
ied with the QCD sum rules in HQET in [3]. In [4] the
mass of the lowest excited heavy meson doublets (2+, 1+)
and (1+, 0+) were studied with QCD sum rules in the
heavy quark effective theory (HQET) up to the order of
O(1/mQ).

QCD sum rules has been used to analyse the couplings
of the heavy hadrons with pions [5-15]. The widths for pi-
onic decays of the lowest two excited doublets (2+, 1+)
and (1+, 0+) is calculated with conventional QCD sum
rules in the leading order of HQET in [5]. Light-cone QCD
sum rules (LCQSR) with the full QCD Lagrangian is first
employed to derive the strong coupling constants: gπD∗D,
gπB∗B [11]. Recently the strong coupling constants:
gπB∗B∗ , gπB′

1B′
0

and gπB′
1B∗ were calculated using LCQSR

with finite heavy quark mass [13]. The couplings of heavy
baryons with soft pions have been estimated with QCD
sum rules in an external axial field [14]. In this work we
employ the LCQSR in HQET to calculate the on-shell cou-
plings of the pions with heavy meson doublets (0−, 1−),
(0+, 1+) and (1+, 2+) to the leading order of 1/mQ.

The LCQSR is quite different from the conventional
QCD sum rules, which is based on the short-distance op-
erator product expansion (OPE). The LCQSR is based
on the OPE on the light cone, which is the expansion
over the twists of the operators. The main contribution
comes from the lowest twist operator. Matrix elements of
nonlocal operators sandwiched between a hadronic state
and the vacuum defines the hadron wave functions. When
the LCQSR is used to calculate the coupling constant,

the double Borel transformation is always invoked so that
the excited states and the continuum contribution can be
treated quite nicely. Moreover, the final sum rule depends
only on the value of the wave function at a specific point
like ϕπ(u0 = 1

2 ), which is much better known than the
whole wave function [11].

One difficult problem encountered in studying the de-
cay widths of excited heavy mesons with QCD sum rules
is the following. Except for the lowest states 0−, 1−, the
spectra contains a pair of states for any spin-parity jP

with close values in their masses but quite different in
magnitudes of their decay widths. In our case, one of the
two 1+ states is a narrow resonance decaying mainly by
emitting a D wave pion, while the other one is a very
wide resonance decaying by emitting a S wave pion. An
interpolating current used for the narrow 1+ state with a
small coupling to the other 1+ state may cause sizable er-
ror in the result of calculation. It is only in the mQ → ∞
limit, there is a conserved quantum number j`, the an-
gular momentum of the light component, which can be
used to differentiate the two states. Therefore, HQET has
important and unique advantage for this purpose. These
are the motivation for our approach of using LCQSR in
HQET.

The proper interpolating current J
α1···αj

j,P,j`
for the states

with the quantum number j, P , j` in HQET was given in
[4]. They were proved to satisfy the following conditions

〈0|Jα1···αj

j,P,j`
(0)|j′, P ′, j

′
`〉

= fPjl
δjj′δPP ′δj`j

′
`
ηα1···αj , (1)

i 〈0|T
(
J

α1···αj

j,P,j`
(x)J

†β1···βj′
j′,P ′,j′

`
(0)

)
|0〉

= δjj′δPP ′δj`j′
`
(−1)j S gα1β1

t · · · gαjβj

t

×
∫

dtδ(x − vt) ΠP,j`
(x) (2)

in the mQ → ∞ limit, where ηα1···αj is the polariza-
tion tensor for the spin j state, v is the velocity of the
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heavy quark, gαβ
t = gαβ − vαvβ is the transverse metric

tensor, S denotes symmetrizing the indices and subtract-
ing the trace terms separately in the sets (α1 · · ·αj) and
(β1 · · ·βj), fP,j`

and ΠP,j`
are a constant and a function

of x respectively which depend only on P and j`. Be-
cause of (1) and (2), the sum rule in HQET for decay
widths derived from a correlator containing such currents
receive no contribution from the unwanted states with the
same spin-parity as the states under consideration in the
mQ → ∞. Starting from the calculations in the leading or-
der, the decay amplitudes for finite mQ can be calculated
unambiguously order by order in the 1/mQ expansion in
HQET.

2 Sum rules for decay amplitudes

In the present work we shall confine ourselves to the lowest
lying states in the leading order of 1/mQ expansion. De-
note the doublet (1+, 2+) with j` = 3/2 by (B1, B

∗
2) and

the doublet (0+, 1+) with j` = 1/2 by (B′
0, B

′
1). There

are many combinations for the coupling constant gπBxBy
,

where Bx, By belongs to the three doublets (0−, 1−),
(0+, 1+) and (1+, 2+). Due to the heavy quark symme-
try and chiral symmetry there exist only six independent
coupling constants, i.e., three independent coupling con-
stants when Bx, By belongs to different doublets and an-
other three when Bx, By belongs to the same doublet. For
example, from covariance and conservation of the angular
momentum of the light component in the mQ → ∞ limit,
the amplitudes for the decay of B1, B∗

2 to the ground
states B, B∗ in the doublet (0−, 1−) with j` = 1/2 have
the following forms

M(B1 → B∗π) = Iε∗
µην(qµ

t qν
t − 1

3
gµν

t q2
t )g(B1, B

∗), (3)

M(B∗
2 → Bπ) = Iηµνqµ

t qν
t g(B∗

2 , B), (4)

M(B∗
2 → B∗π) = Iiεαβσρε

∗αvβησµqρ
t qtµg(B∗

2 , B∗), (5)

where ηµν , ηµ and εµ are polarization tensors for states
2+, 1+ and 1− respectively. qtµ = qµ − v · qvµ. I =

√
2,

1 for charged and neutral pion respectively. As shown in
[15] the constants in (3)-(5) satisfy

g(B∗
2 , B) = g(B∗

2 , B∗) =

√
2
3

g(B1, B
∗) . (6)

We calculate the following six independent coupling
constants: g1 = gπB1B∗ , g2 = gπB′

0B , g3 = gπB′
1B′

0
, g4 =

gπB∗
2B1 , g5 = gπB′

1B1 and g6 = gπB∗B . Other coupling
constants are related to them. There are related results
for g2, g3 and g6 in [6-15]. In [5] g1 and g2 is calculated
with QCD sum rules in the short distance expansion. For
the sake of comparison and completeness, we also present
the sum rules for g2, g3 and g6.

For deriving the sum rules for the coupling constants
we consider the correlators∫

d4x e−ik·x〈π(q)|T
(
Jβ

1,−, 1
2
(0)J†α

1,+, 3
2
(x)

)
|0〉

=
(

qα
t qβ

t − 1
3
gαβ

t q2
t

)
I GB1B∗(ω, ω′) , (7)

∫
d4x e−ik·x〈π(q)|T

(
J0,+, 1

2
(0)J†

0,−, 1
2
(x)

)
|0〉

= I GB′
0B(ω, ω′) , (8)∫

d4x e−ik·x〈π(q)|T
(
J0,+, 1

2
(0)J†α

1,+, 1
2
(x)

)
|0〉

= qα
t I GB′

1B′
0
(ω, ω′) , (9)∫

d4x e−ik·x〈π(q)|T
(
Jα

1,+, 3
2
(0)J†σβ

2,+, 3
2
(x)

)
|0〉

=
(

qα
t qσ

t qβ
t − 1

6
q2
t (gαβ

t qσ
t + gασ

t qβ
t +

4
3
gσβ

t qα
t )

)

×I GB∗
2B1(ω, ω′) , (10)∫

d4x e−ik·x〈π(q)|T
(
Jα

1,+, 3
2
(0)J†β

1,+, 1
2
(x)

)
|0〉

= iεαβσδqt
σvδI GB′

1B1(ω, ω′) , (11)∫
d4x e−ik·x〈π(q)|T

(
Jα

1,−, 1
2
(0)J†

0,−, 1
2
(x)

)
|0〉

= qα
t I GB∗B(ω, ω′) , (12)

where k′ = k + q, ω = 2v · k, ω′ = 2v · k′ and q2 = 0. The
forms of the right hand side of (7)-(12) are determined
by the conservation of angular momentum of the light
component and the fact that α, β, σ and δ are transverse
indices, x − y = vt on the heavy quark propagator. The
interpolationg currents are given in [4] as

J†α

1,+, 3
2

=

√
3
4

h̄vγ5(−i)
(

Dα
t − 1

3
γα

t /Dt

)
q , (13)

J†α1,α2

2,+, 3
2

=

√
1
2

h̄v
(−i)

2

×
(

γα1
t Dα2

t + γα2
t Dα1

t − 2
3
gα1α2

t /Dt

)
q, (14)

J†α

1,−, 1
2

=

√
1
2

h̄vγα
t q , J†α

0,−, 1
2

=

√
1
2

h̄vγ5q , (15)

J†
0,+, 1

2
=

1√
2

h̄vq , J†α

1,+, 1
2

=
1√
2

h̄vγ5γα
t q . (16)

where hv is the heavy quark field in HQET and γtµ =
γµ − vµ/v.

Let us first consider the function GB1B∗(ω, ω′) in (7).
As a function of two variables, it has the following pole
terms from double dispersion relation

f−, 1
2
f+, 3

2
g(B1B

∗)

(2Λ̄−, 1
2

− ω′)(2Λ̄+, 3
2

− ω)

+
c

2Λ̄−, 1
2

− ω′ +
c′

2Λ̄+, 3
2

− ω
, (17)

where fP,j`
are constants defined in (1), Λ̄P,j`

= mP,j`
−

mQ. As explained in Sec. 1, only one state with jP = 1+

contributes to (17) as the result of (1). This would not be
true if the last term in (13) is absent.

For deriving QCD sum rules we calculate the corre-
lator (7) by the operator expansion on the light-cone in
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HQET to the leading order of O(1/mQ). The expression
for GB1B∗(ω, ω′) reads

√
6

8

∫ ∞

0
dt

∫
dxe−ikxδ(−x − vt) (18)

×Tr{γt
β(1 + v̂)γ5(Dt

α − 1
3
γt

αD̂t)〈π(q)|u(0)d̄(x)|0〉}.

The pion wave function is defined as the matrix elements
of nonlocal operators between the vacuum and pion state.
Up to twist four they are [11]:

< π(q)|d̄(x)γµγ5u(0)|0 >

= −ifπqµ

∫ 1

0
du eiuqx(ϕπ(u) + x2g1(u) + O(x4))

+ fπ

(
xµ − x2qµ

qx

) ∫ 1

0
du eiuqxg2(u) , (19)

< π(q)|d̄(x)iγ5u(0)|0 >

=
fπm2

π

mu + md

∫ 1

0
du eiuqxϕP (u) , (20)

< π(q)|d̄(x)σµνγ5u(0)|0 >

= i(qµxν − qνxµ)
fπm2

π

6(mu + md)

∫ 1

0
du eiuqxϕσ(u). (21)

The wave function ϕπ is associated with the leading twist
two operator, g1 and g2 correspond to twist four operators,
and ϕP and ϕσ to twist three ones. Due to the choice of
the gauge xµAµ(x) = 0, the path-ordered gauge factor
P exp

(
igs

∫ 1
0 duxµAµ(ux)

)
has been omitted.

Expressing (18) with the pion light-cone wave func-
tions, we arrive at

GB1B∗(ω, ω′) = −i

√
6

8
Fπ

∫ ∞

0
dt

∫ 1

0
duei(1−u) ωt

2 eiu ω′t
2 u

×{ϕπ(u) + t2g1(u) +
it

q · v
g2(u) +

it

6
µπϕσ(u)} + · · · ,

(22)

where µπ ≡ m2
π

mu+md
= 1.76GeV, Fπ = fπ√

2
= 92MeV for

neutral pions. For large euclidean values of ω and ω′ this
integral is dominated by the region of small t, therefore it
can be approximated by the first a few terms.

Similarly, we have:

GB′
0B(ω, ω′) =

i

4
Fπ

∫ ∞

0
dt

∫ 1

0
duei(1−u) ωt

2 eiu ω′t
2

×{µπϕP (u) − (q · v)[ϕπ(u) + t2g1(u)]}. (23)

GB′
1B′

0
(ω, ω′) =

i

4
Fπ

∫ ∞

0
dt

∫ 1

0
duei(1−u) ωt

2 eiu ω′t
2

×{ϕπ(u) + t2g1(u) +
it

q · v
g2(u) − it

6
µπϕσ(u)}, (24)

GB∗
2B1(ω, ω′) = −i

√
6

8
Fπ

∫ ∞

0
dt

∫ 1

0
duei(1−u) ωt

2 eiu ω′t
2 u2

×{ϕπ(u) + t2g1(u) +
it

q · v
g2(u) +

it

6
µπϕσ(u)}, (25)

GB′
1B1(ω, ω′) = i

√
6

24
Fπ

∫ ∞

0
dt

∫ 1

0
duei(1−u) ωt

2 eiu ω′t
2 u

×{µπϕP (u) + (q · v)[ϕπ(u) + t2g1(u)]}, (26)

GB∗B(ω, ω′) =
i

4
Fπ

∫ ∞

0
dt

∫ 1

0
duei(1−u) ωt

2 eiu ω′t
2

×{ϕπ(u) + t2g1(u) +
it

q · v
g2(u) +

it

6
µπϕσ(u)}. (27)

After performing Wick rotation and double Borel
transformation with the variables ω and ω′ the single-pole
terms in (17) are eliminated. Subtracting the continuum
contribution which is modeled by the integral in region
ω, ω′ ≥ ωc, we arrive at:

g1f−, 1
2
f+, 3

2
= −

√
6

4
Fπe

Λ−, 1
2

+Λ
+, 3

2
T {u0ϕπ(u0)Tf0(

ωc

T
)

− 4
T

u0g1(u0) +
4
T

G1(u0) +
1
3
µπu0ϕσ(u0)}, (28)

where u0 = T1
T1+T2

, T = T1T2
T1+T2

, T1, T2 are the Borel param-

eters, G1(u0) ≡ ∫ u0

0 ug2(u)du and fn(x) = 1− e−x
n∑

k=0

xk

k! .

The presence of the factor fn is the result of subtracting
the integral

∫ ∞
ωc

sne− s
T ds as a contribution of the con-

tinum. In obtaining (28) we have used the Borel transfor-
mation formula: B̂T

ω eαω = δ(α − 1
T ). The integral in the

function G1(u0) in (28) arises from the factor 1/(q · v) in
(22). Here we have used integration by parts to absorb
the factor 1/(q · v). In this way we arrive at the simple
form after double Borel transformation. In the following
we shall use the same technique to deal with the factor
(q · v)−1 in other sum rules.

Similarly we have:

g2f−, 1
2
f+, 1

2
=

1
4
Fπe

Λ−, 1
2

+Λ
+, 1

2
T {−ϕ′

π(u0)T 2f1(
ωc

T
)

+2µπϕP (u0)Tf0(
ωc

T
) + 4g′

1(u0)} , (29)

where ϕ′
π(u0), g′

1(u0) are the first derivatives of ϕπ(u),
g1(u) at u = u0. The appearance of derivatives is due to
the factor (q · v).

g3f
2
+, 1

2
=

1
2
Fπe

2Λ
+, 1

2
T {ϕπ(u0)Tf0(

ωc

T
) − 4

T
g1(u0)

+
4
T

G3(u0) − 1
3
µπϕσ(u0)} , (30)

where G3(u0) ≡ ∫ u0

0 g2(u)du.

g4f
2
+, 3

2
=

√
6

4
Fπe

2Λ
+, 3

2
T {u2

0ϕπ(u0)Tf0(
ωc

T
)

− 4
T

u2
0g1(u0) +

4
T

G4(u0) +
1
3
µπu2

0ϕσ(u0)} , (31)

where G4(u0) ≡ ∫ u0

0 u2g2(u)du.

g5f+, 1
2
f+, 3

2
=

√
6

12
Fπe

Λ
+, 1

2
+Λ

+, 3
2

T
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×{ d

du
(uϕπ(u)) |u0T

2f1(
ωc

T
)

+ µπu0ϕP (u0)Tf0(
ωc

T
) − 4

d

du
(ug1(u)) |u0}, (32)

g6f
2
−, 1

2
=

1
2
Fπe

2Λ−, 1
2

T {ϕπ(u0)Tf0(
ωc

T
) − 4

T
g1(u0)

+
4
T

G3(u0) +
1
3
µπϕσ(u0)} . (33)

3 Determination of the parameters

In order to obtain the coupling constants from (28)-(33)
we need to use the mass parameters Λ̄’s and the coupling
constants f ’s of the corresponding interpolating currents
as input. Λ̄−,1/2 and f−,1/2 can be obtained from the
results in [16] as Λ̄−,1/2 = 0.5 GeV and f−,1/2 ' 0.25
GeV3/2 at the order αs = 0. Notice that the coupling con-
stant f−,1/2 defined in the present work is a factor 1/

√
2

smaller than that defined in [16]. Λ̄+,3/2 and Λ̄+,1/2 are
given in [4]. f+,3/2 and f+,1/2 can be determined from the
formulas (34), (27) and (28) of reference [4] derived from
sum rules for two point correlators. The results are

Λ̄+,3/2 = 0.82 GeV f+,3/2 = 0.19 ± 0.03 GeV5/2,

Λ̄+,1/2 = 1.15 GeV f+,1/2 = 0.40 ± 0.06 GeV3/2. (34)

We use the wave functions adopted in [11] to com-
pute the coupling constants. Moreover, we choose to work
at the symmetric point T1 = T2 = 2T , i.e., u0 = 1

2 as
traditionally done in literature [11]. We adopt the scale
µ = 1.4GeV, at which the values of the various func-
tions appearing in (28)-(33), at u0 = 1

2 , are: ϕπ(u0) =
1.22 ± 0.3, ϕP (u0) = 1.142, ϕσ(u0) = 1.463, g1(u0) =
3.4 × 10−2 GeV2, G1(u0) = −4.5 × 10−3 GeV2, G3(u0) =
−2.0 × 10−2 GeV2, G4(u0) = −1.3 × 10−3 GeV2, g2( 1

2 ) =
0, ϕ′

π(u0) = 0 and g′
1(u0) = 0

4 Numerical results and discussion

We now turn to the numerical evaluation of the sum rules
for the coupling constants. The lower limit of T is deter-
mined by the requirement that the terms of higher twists
in the operator expansion is less than one third of the
whole sum rule. This leads to T > 1.0 GeV for the sum
rules (28)-(33). In fact the twist-four terms contribute only
a few percent to the sum rules for such T values. The up-
per limit of T is constrained by the requirement that the
continuum contribution is less than 30%. This corresponds
to T < 2.5GeV. With the values of pion wave functions at
u0 = 1

2 given above we obtain the left hand side of the sum
rules (28)-(33) as functions of T . The results are shown in
Fig. 1. Stability develops for the sum rule (28)-(33) in the
region 1.0 GeV <T<2.5 GeV. Numerically we have:

g1f−, 1
2
f+, 3

2
= −(0.16 ± 0.02 ± 0.03) GeV2 , (35)

0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7
0.0

0.2

0.4

0.6

0.8

g6

g5

g4

g3

g2

g1

Fig. 1. Dependence of fifjg1−6 in (28)-(33) on the Borel
parameter T for the continuum threshold ωc = 3.0GeV.
The dotted, solid, short-dashed, long-dashed, dot-dashed and
intermediate-dashed curves correspond to the coupling con-
stant g1-g6 respectively

g2f−, 1
2
f+, 1

2
= (0.36 ± 0.02 ± 0.03) GeV3 , (36)

g3f
2
+, 1

2
= (0.13 ± 0.01 ± 0.02) GeV2 , (37)

g4f
2
+, 3

2
= (0.10 ± 0.01 ± 0.02) GeV2 , (38)

g5f+, 1
2
f+, 3

2
= (0.20 ± 0.01 ± 0.02) GeV3 , (39)

g6f
2
−, 1

2
= (0.20 ± 0.01 ± 0.02) GeV2 , (40)

where the first error refers to the variations with T in
this region and the second error takes into account the
uncertaity in ωc. And the central value corresponds to
T = 1.5GeV and ωc = 3.0GeV for (28)-(32). For the sum
rule (33) we use ωc = 2.4GeV.

With the central values of f’s in (34) we get the abso-
lute value of the coupling constants:

g1 = −(3.6 ± 0.4 ± 0.6) GeV−2 , (41)
g2 = 3.6 ± 0.3 ± 0.6 , (42)

g3 = 0.83 ± 0.1 ± 0.2 GeV−1 , (43)

g4 = 2.7 ± 0.2 ± 0.5 GeV−3 , (44)

g5 = 2.6 ± 0.2 ± 0.4 GeV−1 , (45)

g6 = 3.1 ± 0.3 ± 0.6 GeV−1 . (46)

We have not included the uncertainties due to f’s here.
Note that the sum rules (28) and (30)-(33) are also sensi-
tive to the value of ϕπ( 1

2 ). For example, g1 = −4.83 with
ϕπ( 1

2 ) = 1.71 which is one of the values used in [21].
The couplings of pions with heavy mesons obey sym-

metry relations in the leading order of HQET. Only in
HQET the ambiguity due to the presence of two distinct
1+ states can be resolved. We use light-cone QCD sum
rules to calculate all the six independent strong coupling
constants g1-g6 for the lowest three doublets. The sum
rules in HQET for g3 and g6 are consistent with those for
g and g′ in [11,13] in the limit of mQ → ∞ with g3 = 2g′

fπ

and g6 = 2g
fπ

. The sum rule (29) for g2 can be compared to
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that for h in [13] with g2 = 2h
fπ

from definition. In terms of
h our value is 0.25, which is only one half of that given in
[13]. Our result g1 = 3.6 is slightly smaller than that from
the short-distance QCD sum rule [5]. The calculation for
g4 and g5 is new.

With the CLEO measurement of B(D∗+ → D+γ) [18],
a model independent extraction of g has been performed
recently [19]. Two possible solutions of g ( g = fπ

2 g6 in our
notation ) and β are found from fitting to the experimental
data, either g = 0.27+0.04+0.03

−0.02−0.02, β = 0.85+0.2+0.3
−0.1−0.1GeV−1 or

g = 0.76+0.03+0.2
−0.03−0.1, β = 4.90+0.3+5.0

−0.3−0.7GeV−1. The g = 0.76
solution is excluded by the experimental limit Γ (D∗+) <
0.13MeV [20]. The coupling g from the LCQSR approach
is g ∼ 0.21 − 0.40 [7,12,11], which is consistent with the
experimentally favored solution g = 0.27. In a recent work
[21] the mixing effect of the two 1+ states in the lowest ex-
cited heavy meson doublets (2+, 1+) and (1+, 0+) and the
O(1/mQ) correction to the leading order coupling g1 was
calculated. The resulting pionic decay widths of D∗

2(2460)
and D1(2420) are in agreement with the experimental data
[22].
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